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Abstract

Existing event extraction methods classify
each argument role independently, ignoring
the conceptual correlations between different
argument roles. In this paper, we propose
a Hierarchical Modular Event Argument Ex-
traction (HMEAE) model, to provide effec-
tive inductive bias from the concept hierarchy
of event argument roles. Specifically, we de-
sign a neural module network for each basic
unit of the concept hierarchy, and then hierar-
chically compose relevant unit modules with
logical operations into a role-oriented mod-
ular network to classify a specific argument
role. As many argument roles share the same
high-level unit module, their correlation can
be utilized to extract specific event arguments
better. Experiments on real-world datasets
show that HMEAE can effectively leverage
useful knowledge from the concept hierar-
chy and significantly outperform the state-
of-the-art baselines. The source code can
be obtained from https://github.com/
thunlp/HMEAE.

1 Introduction

Event argument extraction (EAE) aims to iden-
tify the entities serving as event arguments and
classify the roles they play in an event. For
instance, given that the word “sold” triggers a
Transfer-Ownership event in the sentence
“Steve Jobs sold Pixar to Disney”, EAE aims to
identify that “Steve Jobs” is an event argument
and its argument role is “Seller”. Most event
extraction (EE) methods treat EE as a two-stage
problem, including event detection (ED, to iden-
tify the trigger word and determine the event type)
and EAE. As ED is well-studied (Nguyen and Gr-
ishman, 2018; Zhao et al., 2018) in recent years,
EAE becomes the bottleneck of EE.
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Steve    Jobs   sold    Pixar    to    Disney    in    2006.

Person Org Time

BuyerSeller Time-
within

Superordinate 
Concept

Argument 
Role

Instance

Figure 1: An example of the concept hierarchy.

Since EE benefits many NLP applica-
tions (Yang et al., 2003; Basile et al., 2014;
Cheng and Erk, 2018), intensive efforts have
been devoted to detecting events and extracting
their event arguments. Traditional feature-based
methods (Patwardhan and Riloff, 2009; Liao and
Grishman, 2010b,a; Huang and Riloff, 2012;
Li et al., 2013) rely on hand-crafted features
and patterns. With the ongoing development of
neural networks, various neural networks have
been used to automatically represent textual
semantics with low-dimensional vectors, and
further extract event arguments based on those
semantic vectors, including convolutional neu-
ral networks (Chen et al., 2015) and recurrent
neural networks (Nguyen et al., 2016; Sha et al.,
2018). Advanced techniques also have been
adopted to further improve EE, such as zero-
shot learning (Huang et al., 2018), multi-modal
integration (Zhang et al., 2017), and weakly
supervised methods (Chen et al., 2017; Wang
et al., 2019).

However, the existing methods all treat argu-
ment roles as independent of each other, regard-
less of the fact that some argument roles are con-
ceptually closer than others. Taking Figure 1 as
an example, “Seller” is conceptually closer to
“Buyer” than “Time-within”, because they
share the same superordinate concepts “Person”
and “Org” in the concept hierarchy. Intuitively,
the concept hierarchy will provide extra informa-
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Figure 2: The overall architecture of HMEAE. Take the argument role “Seller” as an example.

tion about the correlation between argument roles
and help the argument role classification.

To leverage the concept hierarchy information
to improve EAE, we propose the Hierarchical
Modular Event Argument Extraction (HMEAE)
model. Inspired by the previous hierarchical clas-
sification works (Qiu et al., 2011; Shimura et al.,
2018; Han et al., 2018) and the neural module net-
works (NMNs) (Andreas et al., 2016), HMEAE
adopts the NMNs to enable a flexible network ar-
chitecture imitating the concept hierarchical struc-
ture, which can provide effective inductive bias for
better classification performance.

As Figure 1 shows, we divide the concepts
into two types: the superordinate concepts repre-
senting more abstractive concepts, and the fine-
grained argument roles. An argument role can
belong to more than one superordinate concept,
e.g., “Seller” belongs to both “Person” and
“Org”. As shown in Figure 2, we set a neural
module network for each concept, and hierarchi-
cally compose them as the structure of the con-
cept hierarchy into a role-oriented modular net-
work to predict the argument role for each en-
tity: (1) First, for each superordinate concept, a
superordinate concept module (SCM) is instanti-
ated to highlight the textual information related to
the concept; (2) Then for each argument role, the
SCMs corresponding to its superordinate concepts
are composed by role-specific logic union mod-
ules to obtain a unified high-level module; (3) Fi-
nally, an argument role classifier is set to predict
whether the entity is of the given argument role
relying on the output of high-level modules.

Intuitively, considering the concept hierarchy in
our model brings the following benefits: (1) The
high-level modules can significantly enhance the
classifiers, e.g., it is easier to determine whether
an entity is “Time-within” when paying more
attention to the words about “Time”. (2) A super-

ordinate concept module is shared among different
argument roles in the concept hierarchy. Hence, it
can capture the concept features from the shared
information in the data of its subordinate argu-
ment roles, and further provide the correlation in-
formation as an effective inductive bias to the ar-
gument role classifiers. We conduct experiments
on two real-world datasets. The experimental re-
sults show that our methods can achieve state-of-
the-art results.

2 Methodology

In this section, we will introduce the overall
framework of HMEAE. As shown in Figure 2,
HMEAE consists of three components: (1) The
instance encoder represents a sentence into hid-
den embeddings and utilizes a feature aggregator
to aggregate sentence information into a unified
instance embedding. (2) The hierarchical modular
attention component builds a role-oriented embed-
ding to highlight the information about the super-
ordinate concepts of the argument role in the pre-
defined concept hierarchy. (3) The argument role
classifier relies on the instance embedding and the
role-oriented embedding to estimate the probabil-
ity of a certain argument role for the instance.

2.1 Instance Encoder

We denote an instance as an n-word sequence
x = {w1, . . . , t, . . . , a, . . . , wn}, where t, a de-
note the trigger word and the candidate argument
respectively. The trigger word is detected by the
previous event detection models (independent of
our work) and each named entity in the sentence
is a candidate argument.

Sentence Encoder is adopted to encode the
word sequence into hidden embeddings,

{h1,h2 . . . ,hn} = E
(
w1, . . . , t, . . . , a, . . . , wn

)
,

(1)



where E(·) is the neural network to encode the sen-
tence. In this paper, we select CNN (Chen et al.,
2015) and BERT (Devlin et al., 2019) as encoders.

Feature Aggregator aggregates the hidden em-
beddings into an instance embedding. Our method
is independent of the feature aggregator mecha-
nism. Here, we follow Chen et al. (2015) and use
dynamic multi-pooling as the feature aggregator:

[x1,pt ]i =max{[h1]i, . . . , [hpt ]i},
[xpt+1,pa ]i =max{[hpt+1]i, . . . , [hpa ]i},
[xpa+1,n]i =max{[hpa+1]i, . . . , [hn]i},

x =[x1,pt ;xpt+1,pa ;xpa+1,n]

(2)

where [·]i is the i-th value of a vector, pt, pa are the
positions of the trigger t and the candidate argu-
ment a respectively. We concatenate the piecewise
max-pooling results as the instance embedding x.

2.2 Hierarchical Modular Attention
As shown in Figure 2, given the hidden embed-
dings {h1,h2, . . . ,hn}, a superordinate concept
module gives an attention score for each hidden
embedding to model its correlation with the spe-
cific superordinate concept. As an argument role
can belong to more than one superordinate con-
cept, we set a logic union module to combine the
scores from different superordinate modules to-
gether. For each argument role, we hierarchically
compose its superordinate concept modules into
the integrated hierarchical modular attention com-
ponent to build its role-oriented embedding.

Superordinate Concept Module For a specific
superordinate concept c, we represent its seman-
tic features with a trainable vector uc. Following
Luong et al. (2015), we adopt a multi-layer per-
ceptron to calculate the attention scores. We first
calculate the hidden state,

hc
i = tanh(Wa[hi;uc]). (3)

Then, we apply a softmax operation to get the at-
tention score for the hidden embedding hi,

sci =
exp(Wbh

c
i )∑n

j=1 exp(Wbh
c
j)
, (4)

where Wa and Wb are trainable matrices shared
among different superordinate concept modules.

Logic Union Module Given an argument role
r ∈ R, we denote its k superordinate concepts
as c1, c2, . . . , ck, and the corresponding attention

scores for hi are sc1i , s
c2
i , . . . , s

ck
i computed by

Eq. (4). As information about all the superordinate
concepts should be retained in the role-oriented
embedding, we calculate the mean of the attention
scores as the role-oriented attention score,

sri =
1

k

k∑
j=1

s
cj
i , (5)

and then calculate the weighted sum of hidden em-
beddings as the role-oriented embedding,

er =
n∑

i=1

srihi. (6)

2.3 Argument Role Classifier

We concatenate the instance embedding x and the
role-oriented embedding er as the input feature for
the argument role classifier, and estimate the prob-
ability of r ∈ R of instance x as follows:

p(r|x) = exp(r>[x; er])∑
r̃∈R exp(r̃>[x; er̃])

, (7)

where r is the embedding of the argument role r.
The objective function is defined as follows:

L(θ) = −
∑
l

log p(rl|xl), (8)

where θ is all parameters of our model. We adopt
Adam (Kingma and Ba, 2015) to minimize L(θ).

3 Experiments

3.1 Experimental Settings

In the experiments, our model with CNN as the en-
coder is named HMEAE (CNN), whose most hy-
perparameters are the same as Chen et al. (2015)
for a fair comparison. Our model with BERT as
the encoder is named HMEAE (BERT). For a
fair comparison, we set a vanilla BERT baseline
named DMBERT, which is without the hierar-
chical modular attention module but with a dy-
namic multi-pooling layer (Chen et al., 2015) as
the feature aggregator. As our work does not in-
volve the event detection stage, we conduct the ar-
gument role classification based on the event de-
tection models in Chen et al. (2015) and Wang
et al. (2019) for HMEAE (CNN) and HMEAE
(BERT) respectively.



Datasets and Evaluation
We evaluate our models on two real-world
datasets: the widely-used ACE 2005 (Walker
et al., 2006) and the newly-developed TAC KBP
2016 (Ellis et al., 2015).

ACE 2005 (LDC2006T06) is the most widely-
used dataset in event extraction. It contains 599
documents, which are annotated with 8 event
types, 33 event subtypes, and 35 argument roles.
We evaluate our models by the performance of ar-
gument classification. An argument is correctly
classified if its event subtype, offsets and argument
role match the annotation results. Following the
previous works (Liao and Grishman, 2010b; Chen
et al., 2015), we use the same test set containing
40 newswire documents, a development set with
30 randomly selected documents and training set
with the remaining 529 documents.

TAC KBP 2016 The Text Analysis Conference
(TAC) is a series of evaluation workshops orga-
nized to encourage research in NLP and related
applications. In this paper, we use the data of the
TAC KBP 2016 Event Argument Extraction track
(LDC2017E05). This competition annotates dif-
ficult test data but no training data. They encour-
age participants to use training data from any other
sources. Hence we use the ACE 2005 dataset as
our training data, which is less than the data used
by the baselines on TAC KBP 2016.

Concept Hierarchy Design
Considering there is not an existing ontology in
the datasets, we manually design a concept hierar-
chy with 8 different superordinate concepts for our
models. The principle of designing the concept hi-
erarchy is to induce superordinate concepts from
the specific labels using human experience. For
instance, people can easily summarize “Origin”
and “Destination” into “Place”, which is
the desired superordinate concept. Although the
hierarchy used in this paper may not be general-
ized to other datasets with different label defini-
tions, it is tractable to design an appropriate con-
cept hierarchy with minimal human efforts and
provide effective inductive bias via our method.
For the details about the specific concept hierarchy
used in this paper, please refer to the appendix.

Hyperparameter Settings
CNN slides a convolution kernel over the input
embedding sequence to get hidden embeddings.

Following previous work, the input embedding of
each word consists of its word embedding, posi-
tion embedding, and event type embedding. The
hyperparameter settings for HMEAE (CNN) are
shown in Table 1.

Learning Rate 1e-03
Batch Size 20

Word Embedding Dimension 100
Dropout Probability 0.5

Hidden Layer Dimension 300
Kernel Size 3

Position Embedding Dimension 5
Event Type Embedding Dimension 5

uc dimension 900
Wb dimension 900

Table 1: Hyperparameter settings for CNN models.

BERT adopts multi-layer bidirectional trans-
formers to encode the input embedding sequence
into hidden embeddings. The hyperparameters of
DMBERT and HMEAE (BERT) are the same as
the BERTBASE model. To utilize the event type
information in our model, we append a special to-
ken into each input sequence for BERT to indicate
the event type. Additional hyperparameters used
in our experiments are shown in Table 2.

Learning Rate 6e-05
Batch Size 50

Warmup Rate 0.1
uc dimension 900
Wb dimension 900

Table 2: Hyperparameter settings for BERT models.

3.2 Overall Evaluation Results
We compare our models with various state-of-the-
art baselines on ACE 2005: (1) Feature-based
methods, including Li’s joint (Li et al., 2013)
and RBPB (Sha et al., 2016). (2) Vanilla neu-
ral network methods, including DMCNN (Chen
et al., 2015) and JRNN (Nguyen et al., 2016).
(3) Neural network with syntax information, like
dbRNN (Sha et al., 2018) enhancing the recurrent
neural network with dependency bridges to con-
sider syntactically related information.

On TAC KBP 2016, we compare our models
with the top systems (Dubbin et al., 2016; Hsi
et al., 2016; Ferguson et al., 2016) of the competi-
tion as well as DMCNN and DMBERT.

The results are shown in Table 3 and Table 4.
We have the following observations from the re-



Method
Argument Role
Classification

P R F1

Li’s Joint (Li et al., 2013) 64.7 44.4 52.7
DMCNN (Chen et al., 2015) 62.2 46.9 53.5
RBPB (Sha et al., 2016) 54.1 53.5 53.8
JRNN (Nguyen et al., 2016) 54.2 56.7 55.4
dbRNN (Sha et al., 2018) 66.2 52.8 58.7

HMEAE (CNN) 57.3 54.2 55.7
DMBERT 58.8 55.8 57.2
HMEAE (BERT) 62.2 56.6 59.3

Table 3: The overall results (%) on ACE 2005.

Method
Argument Role
Classification

P R F1

DISCERN-R (Dubbin et al., 2016) 7.9 7.4 7.7
Washington4 (Ferguson et al., 2016) 32.1 5.0 8.7
CMU CS Event1 (Hsi et al., 2016) 31.2 4.9 8.4
Washington1 (Ferguson et al., 2016) 26.5 6.8 10.8
DMCNN (Chen et al., 2015) 17.9 16.0 16.9

HMEAE (CNN) 15.3 22.5 18.2
DMBERT 22.6 24.7 23.6
HMEAE (BERT) 24.8 25.4 25.1

Table 4: The overall results (%) on TAC KBP 2016.

sults: (1) HMEAE (CNN) and HMEAE (BERT)
achieve improvements (about 2% in F1) as com-
pared with DMCNN and DMBERT respectively,
which have almost the same network framework
with our models except the hierarchical modular
attention. It indicates that our hierarchical modu-
lar method works well to enhance the EAE mod-
els with the inductive bias from the concept hi-
erarchy. (2) HMEAE (BERT) is comparable to
dbRNN and achieves the state-of-the-art perfor-
mance among existing methods. Our methods
adopt modular networks to consider the hierarchi-
cal concept knowledge in EAE, which is compat-
ible with the sophisticated linguistic knowledge
adopted in dbRNN. We will explore to integrate
this two kinds of external knowledge together to
further improve EAE in the future.

3.3 Case Study

To verify whether the superordinate concept mod-
ules work as we designed, we conduct a case
study. We visualize the attention score sci of
HMEAE (BERT) on a sentence randomly sam-
pled from the ACE 2005 dataset in Figure 3. We
observe that the attention scores for the hidden
embeddings of words related to the superordinate
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Figure 3: Heatmap for attention scores of three su-
perordinate concept modules of the left sentence.

concept are much higher than the others. It in-
dicates that as the superordinate concept mod-
ules are shared among their subordinate argument
roles, the superordinate concept modules can cap-
ture the concept features well without being spe-
cially trained with exclusive data.

4 Conclusion and Future work

In this paper, we propose a hierarchical modu-
lar event argument extraction model (HMEAE),
which adopts flexible modular networks to utilize
the hierarchical concept correlation among argu-
ment roles as effective inductive bias. Experimen-
tal results show that HMEAE achieves the state-
of-the-art performance. In the future, we will fur-
ther explore to leverage other kinds of inductive
bias from human experience to improve extensive
tasks with our modular networks .
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